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In this expanded version of an earlier letter, we consider many computat ional  
details that were omitted for want of space. For d =  2 Ising spins with up to 13 
different short-range interactions, we construct the critical surface in the vicinity 
of (Onsager's) nearest-neighbor (nn) critical point by using the body of the 
available information on the solvable nn case. We then see if the Monte Carlo 
renormalization group flows generated from this point do indeed lie on this sur- 
face and quantify the errors if they do not. 

KEY W O R D S :  Ising model; critical surface; Monte Carlo renormalization 
group; transfer matrix; correlation functions. 

1. I N T R O D U C T I O N  

The renormalization group (RG) provides us with a very satisfactory 
framework for describing critical p h e n o m e n a / 1 <  A central idea in this 
approach is that given a hamiltonian H ~ that describes interactions 
between degrees of freedom on a lattice, one can trade it for another 
hamiltonian H 1, that describes interactions between "block" degrees of 
freedom on a lattice with a spacing L times as large. H ~ and H ~ are 
equivalent for physics at distances beyond L. One can then trade H ~ for H 2 
and so on. This leads to the notion of a flow under renormalization, in 
an infinite-dimensional space of parameters K =  (K1,/s where each 
coupling Ki describes a possible interaction. For example, for a system of 
Ising spins, K1 could be the nearest-neighbor (nn) coupling and so on. One 
next conceives of a critical surface (CS) in K space containing all critical 
Hamiltonians. If one starts with any point on this surface, the flow will be 
restricted to this surface since the dimensionless correlation length is oe to 
begin with and oe/L after blocking. More specifically there is a fixed point 
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H* on this surface towards which all critical Hamiltonians will flow. Since 
all of them can be traded in for H* for long distance physics, the difference 
H ~  H* is termed irrelevant. In contrast if H ~ has a small component out- 
side the CS this "relevant" parameter would get amplified with each 
iteration by a factor L 1Iv where v is the correlation length exponent. Thus 
H n, as n increases, will first track the CS, approach H* and then veer away. 
Universality can be understood in terms of the vanishing under renor- 
malization of irrelevant coordinates (measured from H*) and divergences 
(as H ~ approaches the CS) can be understood in terms of the divergent 
amount of "time" the image point spends near H* before veering away. (It 
should be noted that while the CS and critical indices are universal, H* 
depends on the blocking procedure adopted.) It will be gratifying to test 
this geometrical picture of flows whenever possible. To do so analytically is 
impossible in all but a few cases. The problem is that even a simple nn H ~ 
becomes, upon renormalization, a highly complicated interaction. Only the 
pure Gaussian interaction is free of this problem and remains Gaussian 
under a momentum space reduction of degrees of freedom. Another 
situation where things are somewhat under control is the eexpansion, 
where, to a given order in e, the flow equations and fixed point can be 
restricted to a subspace of K. In the general case, say the d = 2  Ising 
system, one must resort to a brutal truncation to keep things tractable. 

Numerical Monte Carlo methods are relatively free from these 
problems. Recently some very creative methods have been devised for 
extracting the block spin hamiltonian. (5'6) As many as 14 most significant 
interactions have been extracted in d =  2 and 17 in d = 3  in high-precision 
studies. It is also possible to iterate as many as three times. Even if the flow 
is deduced numerically, we still need to know the CS before we can one ask 
if these flows and projected fixed points indeed are restricted to the CS if 
the starting H ~ is critical, and if any small component of H ~ outside the CS 
gets amplified as per the scaling laws. 

This is precisely what we did for d = 2  Ising spins in Ref. 7. We 
provide many details in this expanded version. Using the vast body of 
available information on the solvable nn problem we construct the 
equation for the CS in the vicinity of the nn transition at 
K=(0.440687,0,0,0...). More precisely, we derive the equation for the 
tangent plane at this point in Section 2 and curvature corrections in Sec- 
tion 3. In Section 4 we inquire if the block Hamiltonian generated from a 
critical nn system by the above-mentioned MCRG studies do indeed lie on 
this surface and if not, we quantify the errors. Likewise, if some truncated 
block Hamiltonian is simulated, we can quantify the relevant variable and 
ask if it grows according to scaling laws upon iteration. 

A by-product of our analysis is the notion of a metric in K space. The 
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metric factor gi converts every coupling k i to a "physical" value k; = giki, 
where k~ is a truer measure of its importance, i.e., measures its contribution 
to the singular part of the free energy. (Here all ki are measured from the 
nn critical point.) Thus a coupling can be said to be small in a physical 
sense if the metricized value g~ki is small. Likewise if criticality is lost, say 
by the reduction of some k; by a small amount, it can be restored by 
increasing any other k S by the same amount. This will be discussed on Sec- 
tion 2. 

There is another question we partly answer: even though (metricized) 
individual terms corresponding to more distant and complicated interac- 
tions can be small, could they be safely neglected or could they, as a group, 
produce big effects due their large numbers? The answer seems negative at 
least in the limited context that we study in Section 4. 

The final point we address (in Section 5) is the following. In searching 
for a fixed point, one begins with a critical nn system and starts iterating. 
There are two routes to follow here. In the first one always simulates the nn 
system, and having obtained the configurations forms the block spins and 
extracts the block Hamiltonian. To block again one does not simulate with 
the block Hamiltonian, one simply does one more blocking. The advantage 
of this method is that one never leaves the critical surface (except for size 
effects). One does not even have to ask what the block Hamiltonian is at 
each stage. Stated differently, if only the first ten interactions can be 
unearthed without sizable errors, the neglect of the others does not con- 
stitute a truncation error that grows, since every interaction that can fit 
into the given lattice is really there, it is just not extracted or reported. The 
drawback in this scheme is that with each blocking the lattice size 
diminishes. The second approach tries to beat this by simulating the block 
Hamiltonian on the original lattice. Now the problem is with the inevitable 
truncation in the Hamiltonian being simulated and the magnification of 
this error with further iteration. 

For  d =  2 our detailed knowledge of the critical surface allows us to 
propose a truncation scheme that will put one back on the critical surface 
after every iteration and truncation. (There is, however, a cruder scheme, 
which gives nearly the same results but is not predicated on such detailed 
knowledge. One could explore the possibility of applying it in d = 3.) 

2. THE T A N G E N T  PLANE A N D  M E T R I C  

We illustrate the procedure for obtaining the tangent plane in the 
K1 /s (nn-nnn) subspace. The partition function is 

e Nf= Z = 2 exp(K127SSnn + K2~SSnnn) (2.1) 
s 

822/42/3-4-3 
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If /s  the problem is solvable. There is a phase transition at 
K~c = 0.440687 with a logarithmic singularity in the specific heat. This point 
belongs to the CS in the K~-K 2 plane. Our aim here is to determine the 
tangent to this CS. First observe that 

f ' =  dr/dR 1 (2.2) 

(wheref i s  the free energy per site) will have a logarithmic singularity in its 
K~ or / (2  derivative as we approach Ksc along the K~ axis. This is because 
in either case we are differentiating f '  with respect to the relevant variable. 
By the same token the directional derivative along the tangent to the CS 
will be free of singularties since we are differentiating with respect to the 
irrelevant variable. If we consider a point on the Ks axis a distance 6 from 
Klc we will find that while both K~ and K2 derivatives will diverge as 6 = 0, 
a certain linear combination will be divergence free. This combination 
specifies the tangential direction. To find Of'/•k, (i = 1, 2) we use 

Of'/OKi = a2f/aK, OK, = a2f/~K~ OK, = 0(2(H, ) ) /0Ki  (2.3) 

where Hj  = SSnn and H z = SSn,. are the interactions that multiply K~ and Kz 
in the energy formula, Eq. (2.1). (The factor of 2 arises because at each of 
the N sites there are two terms of the form Hi associated with two indepen- 
dent directions.) We know that (a) 

2(SSnn ) = . , ~  -- 8/rC(3 In 3 -- 3 62 In 6/x/2 ) + 0(33) 
(2.4) 

2(SSn,n ) = 4/7r(1 -- 2 ~ 6 In 6 + 6 62 In 6) + 0(63) 

It follows that along the tangent plane 

A - k s + xf2 kz = 0 (2.5t 

where k 1 and k2 are measured from (Ksc, 0), f '  has a finite derivative. 
The extension of Eq. (2.5) to more couplings is direct: (i) one com- 

putes m ( H i ) ,  where m is the multiplicity and H i the corresponding interac- 
tion; (ii) one takes the kl derivative at the point Ksc + 6 and picks out the 
coefficient of the In c~ term, dropping an overall factor of - 8 / m  For any 
multispin interaction, m is chosen so that every interacting doublet, quar- 
tet, sextet, etc. is represented exactly once. In contrast to ( H  s)  and ( H 2 )  
which are readily available, the others had to be computed. We relied on 
Itzykson's paper (91 on the Ising model to compute ( H i ) .  An example is 
given in Appendix A. Table I contains the values gs through g13, where g, 
are the coefficients in the equation for the tangent plane: 

A =_ Sgik~ = 0 (2.6) 
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Table I. Metr ic  Coeff icients for 13 Coupling Ordered According to Range. a 

0 1 2  
3 4 5  
6 7 8  

gi 

k l = k m 1 1.0000 

k2 = h04 ~ 1.4142 

k3 = ko134 2 x/2(1 - 2/~)* 1/2 0.5139 

k4 = k02 4 .~/Tz 1.8006 

k5 = k1345 (8/~ -- 1 )* 2 3.0930 

k6 = k1357 4 x/'2(4/~z - 1 )* 1/2 0.7728 

k7 = k05 2*2 4.0000 

ks=k~ xf2*2 2.8289 

'/'29 = ko457 4 x / 2 / ~ ' 2  3.6000 

kl0  = k0157 (8/7~- 1 )* 4 6.1859 

kli = ko123 x/2* 4 5.6569 

k12 = k08 16 .~/37z 2.4008 

k 13 = k0t48 16/37z'4 6.7906 

Multiplicity factors (relative to the first term) are shown explicitly following the *. For 
example there are eight per site of the form 0148. 

We would like to view gi as the metric (near the nn transition) that 
converts any ki to a more physical k; = gik~ that is a truer measure of its 
significance in controlling the singular part of the free energy. F o r  example 
in the K1 K2 plane we see that if criticality is lost by a change 6kl in kl;  it 
can be restored by a compensating change 6k2= -~kl/,,/2. Thus k2 is X/2 
times more effective than kl,  and k2=-,,/2kz is a better measure of this 
term. 

3. Q U A D R A T I C  CORRECTIONS 

The tangent plane that we determined in Section 2 will fail to be a 
good approximation to the CS as we move further out from the point of 
tangency. We now derive the first corrections due to the curvature of the 
CS. These will turn out to be rather small (for the excursions in MCRG 
studies). Let us begin in the 1 2 plane again. In the tangent approximation, 
the CS is given by 

k 2 = - (1 / , J i - )  k 1 + O(k 2) (3.1) 
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We will now derive the coefficient of the k 2 term. Consider a point 
(k~c + 6, 0). Let some curve [kl(t),  k2(t)] pass through this point, where t 
is a parameter that vanishes at this point. Suppose we compute df'/dt. We 
will find that it has a logarithmic singularity as c5 vanishes: 

df'/dt = k l ,~ f ' /Ok 1 + k2,tOJ"/ak 2 (3.2a) 

= - (8 /70[k~ , , lncS+x /2k2 , , lnc~]+O(6  ) (3.2b) 

where ki, ,  = dk]dt. However the In singularity vanishes if 

kl.t + ~ k2.~ = 0 (3.3) 

i.e., if the curve has the same tangent as the CS. Let us now repeat this 
analysis for d2f'/dt 2. We will find that singularities are present in general 
but can be eliminated on a curve of a particular curvature. The latter is, of 
course, the curvature of the CS that we are seeking. Here are the details. 
Differentiating Eq. (3.2a) with respect to t we get 

dZf'/dt 2 = k~, u #f'/Ok~ + k2,t, #f'/ak2 + (kl,,) 2 #2f'/ak~ 

+ (k2,,) 2 O2f'/Ok~ + k,,,k2,, #2f'/Ok, ak2 

+ k2,,k~,, 02f'/Ok2 Okl (3.4) 

As 6 ~ 0 one can expect In 6 and ~ -  ~ singularities. The latter will however 

cancel automatically given that kl. t + ~ k2,t = 0. To see this, consider the 
sum of the third term and fifth terms, where we can expect a ~-I  
singularity. 

(3 )+  (5 )=  kl,, a/ak~ [kl,t Of'/akl + kx,, #f'/ak2] (3.5) 

However the term in brackets is free of In 6 singularities since k~ and k2 are 
in the ratio 1 : - l / x / 2 .  Thus, differentiating with respect to k~ (i.e., 3) will 
only produce a in term. A similar argument can be applied to the sum of 
the fourth and sixth terms. In short we must compute all the In c~ terms in 
right-hand side of Eq. (3.4) and set them to zero. The In 6 terms in c?2f'/Ok 2 
and •2f'/Okl Ok2 can be read off Eq. (2.4), they are - 3  xf2 and - 6  (upon 
dropping the usual factor of - 8 /g ) .  The tedious computation of the 
singular part of ~?2f'/Ok~ = ~3f/~k~ ~k~ is described in Appendix B. The 

resultant value is - 4  ~ (1 + 2/~). Let us now return to Eq. (3.4) with 
these results. Since t is any acceptable parameter let us trade t for the 
function kl(t), i.e., use kl as the parameter on the curve. 
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We get, upon setting dk2/dk I = - l / x / 2 ,  the following coefficient for 
the In c5 term (on dropping the usual factor of - 8 / ~ )  

k~ ~ - 3 xf2 + (1/.,/2)(2)(6) + ( -  l / x / 2 ) 2 ( - 4  x/2)(1 + 2/~z) 

This implies 
k2' = (4/~ - l) (3.6) 

where primes denote differentiation with respect to kl. 
The equation for the CS therefore is 

k2 = - ( 1 / X )  k, + 1/2(4/~ - 1) k 2 + O(k~) (3.7) 

which can be rewritten 

A = 2-1/2(4/rc - 1) k~ = 0.19321k~ (3.8) 

in terms of A _= ~ k2 + kl. If we now define a metric distance d by 

d 2 = ~ (gik ,)  2 (3.9) 
i 

we can write Eq. (3.8) as 

A = (2 3/2)(4/~- 1) d2= 0.09660d 2 (3.10) 

since on the surface d 2 = k 2 + ( x ~  k2) 2 = 2k2 + O(k~). 

Our motivation for rewriting Eq. (3.8) as Eq. (3.10) is the following: 
In most of the MCRG studies k is not confined to the 1-2 plane though it 
is almost entirely in it. In such a situation we can expect that an equation 
like (3.10) will hold, but with a coefficient ~(0) for the d 2 term, where 0 
measures the angle out of the 1-2 plane. Now if this angle is small (even 
after metricizing the lengths), we can assume that ~(0) is approximately 

equal to c~(0)= (4/~z- 1)/2 , ,~ .  Now in most of the cases the length of k in 
the 1-2 plane is 95% 98% of the full length and we will set c~(0)=c~(0). 
The numerical value of this term is confined to the range 0.002-0.003. This 
suggests that any corrections due to nonzero 0 or higher orders in d are 
very much smaller. (The numerical uncertainties in A in today's best data 
are around 0.001.) We are now ready to perform a comparison of 
Eq. (3.10) with the MCRG results. 

4, C O M P A R I S O N  W I T H  N U M E R I C A L  W O R K  

We begin with the well-known fixed point of Nauenberg and 
Nienhui~ (1~ which has components K1 -= K01 = 0.307, i.e., 
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k 1 = 0.307 - 0.441 = -0.134; k2 = K 2  = k o 4  = 0.084; and k3 =/s = 
ko134 = --0.004. We get A = - 0 . 0 1 7 .  Since the vector is 99% in the 
1-2 plane, we safely use Eq. (3.10) which predicts A = 0.002. So the error in 
A is 0.019. This translates to a 5% error in the following sense. (This was 
suggested to us by Professor Swendsen.) Suppose we take a point on the 
CS (so that A = 0.002) and rescale K by 1%. This changes A by roughly 
1% of K~c =0.440689, i.e., by 0.004. So an error of 0.019 is roughly a 5% 
effect. Next consider Callaway and Petronzio, m) who found a novel way to 
extract the renormalized couplings. Their fixed point is at k~ = -0.12 T 0.01 
and k2 =0.07g0.01.  The error is again around 5%. 

We now turn to the highly accurate results of Swendsen ~5) and of 
Gupta and Corderey./6) Swendsen starts on a 32 • 32 lattice with a critical 
nn system. Having generated the configurations, he blocks the spins 
(2 • 2 blocking) and extracts the block Hamiltonian by a method devised 
by him. He reports seven couplings: kl through k7 (except ks) and k12. The 
A for three of these sequential blockings is 0.004, 0.005 (This time k was 
98% in the 1-2 plane). The expected values for A are 0.002, 0.003, and 
0.003, respectively. Thus the errors are of the order of 0.5%. They do not 
grow with each blocking since the Hamiltonian simulated is always a 
critical nn Hamiltonian. Of course the lattice size decreases to 4 • 4 after 
the third blocking. However there is no visible growth in A due to this 
finite size effect. 

He also gives results of 3 x 3 blockings: twice on a 36 x 36 lattice and 
once on a !2 x 12 lattice. Here however k has a sizable out of plane com- 
ponent and hence we cannot compute A reliably. If we ignore this, the 
expected A's are 0.002, 0.003, and 0.002 compared to "measured" values of 
0.001, -0.006, and 0.000. Notice that in the 2 x 2 case the flow is slightly 
above the CS while in the 3 x 3 case it seems to be below the CS. 

Now for Gupta and Corderey who give us the results of three studies 
G(1), G(2), and G(3). In G(1)(G(2)) 2 x 2  blocks are formed on a 
32 x 32(64 x 64) lattice starting with a critical nn system. Fourteen different 
block interactions are deduced by yet another method. The calculated A is 
0.0020 in all the three cases due 13 terms. The tiny effect due to the 14th 
will be discussed later. The measured values were 0.0087, 0.0061, and 
0.0144. (The k vector was 95% in the 1-2 plane). 

However these numbers do not give the complete picture; for that we 
must turn to Fig. 1, which shows how A changes as we include more and 
more terms in the order of increasing range (defined as the largest 
separation between any two spins in interaction,) When many terms of a 
given range are encountered, couplings with fewer spins get precedence and 
further degeneracies are resolved by seeking that orderings of terms which 
favours oscillations in sign. 
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Fig. 1. Variation of A as more and more interactions are included in the sum. In G(1) (G(2)) 
2 x 2 blocks are formed on a critical 32 x 32 (64 • 64) lattice with nn interactions. In G(3) 2 x 2 
blocks are formed keeping only 14 interactions extracted from G(2). 

The best way to summarize G(1) is to say that A oscillates around a 
value of 0.005. The graph suggests that if more terms were included the 
oscillations would converge to 0.005. The error would be 0.75%. We can 
see that not only do individual contributions seem to decrease with range, 
but also that there are big cancellations within each range. (In A, opposite 
couplings tend to cancel since the gi are all positive due to Griffiths' 
inaqalities), n 2) 

Consider now G(2). Here the oscillations are about 0.003, i.e., the 
error is 0.25 %. We attribute the improvement to the doubling in lattice size 
which alters the last half a dozen couplings. 

As for G(3), which is obtained by simulating the truncated 
Hamiltonian deduced in G(2), the input error is 0.004. [The last point on 
the graph of G(2) and not the average, gives the input error.] By scaling 
theory, this will get amplified in a 2 x 2 blocking to 0.004 x 21/v = 0.008. So 
we expect that G(3) will correspond to oscillations about A = 0.010 which 
seems to be the case. (Had we included the fourteenth coupling with its 
estimated contribution of 0.001, the expected A would have been 0.012.) 

The figure also suggests a way by which t h e  authors could have 
improved matters in computing G(3) from G(2). Suppose they had altered 
the last coupling such that A came down to 0.002 (instead of being at 
0.006). This would have converted a relevant error (arising from the neglect 
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of all smaller interactions) to an irrelevant error (in the last component,  
which they altered to get back on the CS). Of course, in this d =  2 case 
where the critical exponents are known, the only point in doing this would 
be to see how well numerical studies could perform given a way to get back 
on the CS after every iteration. 

There is a more ad hoc but possibly more generalizable prescription. 
Suppose the feature we see in the figure, namely that as more and more 
terms are included A will oscillate around the correct value (by correct we 
mean the best one can do given the finite lattice size) and that these 
oscillations are roughly symmetrical. Then a good rule of thumb one can 
follow even if gi are unknown would be the following: assemble all the 
couplings according to range, choosing in case of a tie that order that 
promotes oscillations and simply reduce the last reliably measured term to 
half its value if an oscillatory pattern has set in. When applied to the thir- 
teenth, twelfth, or eleventh point of G(2), this prescription brings A to 
0.0030, 0.0030, and 0.0025, respectively. One may try this for d =  3. 
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A P P E N D I X  A 

We will present here, as an illustrative example, the calculation of 
(Ho134), where Ho~34 is the product of spins around an elementary pla- 
quette. We will work in the transfer matrix formalism. (9) One first views the 
x and y directions as space and time directions. One row is arbitrarily 
chosen as the zero time row. At the sites on this row, labeled by integer n, 
one assigns matrices ~i(n), i =  1, 2, 3, obeying the Pauli algebra. Matrices 
at different sites commute. In terms of these a transfer matrix is defined: 

expI   3 n, 3 n+l,JexpEK.  l,n  1  A1, 
where the sum is over the sites of the zeroth row and K = K ~  and 
K * =  -ln(thK)/2. The partition function is 

Z = T r (T  R) (A2) 

where R is the number of rows. In the limit R --* oe this simplifies to 

Z =  (0[ T R 1 0 ) =  tm~xR (A3) 



Tests for Monte  Carlo Renormalization Studies 285 

where tma x is the largest eigenvalue of T and ]0} the corresponding eigen- 
vector. The thermal average of classical spins (s(nl, yl)"'s(nk, Yk)} is 
given by 

where 

(s(n,, y,)'"s(nk, Yk)> = (0[ z[a~(n,)...a~(nk)] 10} (A4) 

a~(n) = T Y~3(n) T .v (A5) 

and the time-ordering symbol z requires that the operators in square 
brackets be ordered such that y increases as we go from right to left. 

Applying Eq. (A4) to the plaquette terms we get 

(Ho134} = (SoS,S3S4} = (01 ~r~(0)a~(1)a3(0) a3(1) [0} (A6) 

Let us now use 

a~(n) = T-lo-3(n) T =  I-C*-S*o-l(n)3 o-3(n ) (A7) 

where C* and S* are Ch(2K*) and Sh(2K*) respectively. Now we use 
(~r3)z = 1, to get 

(Ho~347 = (0l E C * - S * a l ( 1 ) ] E C * - S * a , ( 0 ) ]  [0} 

=C'2-2C*S*(l  a , (0 ) [0>[ -S*2<I  a1(0)r ) 10} (A8) 

One now introduces the Clifford operators defined by 

1 F,,_ 1/2.~ = a , (m) a3(n) 

V '0 1 Fn,~__ 1/2 = L ax(m) ~2(n) (19) 

obeying the anticommutation relations: 

{F~, rb} = 26ab (A10) 

In terms of these, 

(H0,34) = C #2 -]- 2iC*S* (Od I'_1/2,0F0,1/2 [0) 

-- S*2(0I F 1/2,0Fo,1/2f'i/2,1/'l,3/2 [0} (A l l )  

We now turn to Eq. (108) of Itzykson (9) to get the FF correlations. (He 
gives the expectation value of the r ordered products. These become 
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ordinary products for the equal time case we are considering). For the four 
F correlations, we use Wick's theorem: 

<Ol r, rjrkr, Io> = <ol r, rj IO><Ol rkrl Io> 

+ <01V, FI 10><01 rjFk 10>-  <01F, rk 10><0t V/F1 10> (A12) 

Finally we need to take the K derivative of Eq. (A11) and isolate the In 6 
part. This is readily done upon keeping upto order (~2 terms in the integrals 
for the correlation functions given in Itzykson. [If we differentiate (A12) 
using the chain rule, the term that is not being differentiated must be 
evaluated exactly at ~ =0. These integrals can be reduced to Bessel 
functions. One uses the formula 

(a--cos x--COS y ) - l =  d texp[ - t (a -cos  x - c o s  y)]  

which is valid for a > 2.] 
Finally we must include the multiplicity factor, and drop a factor of 

-8/~ to get the coefficient go134. 
The 13 terms we considered involved four F correlators. The four- 

teenth term of Gupta and Corderey for which we did not calculate the coef- 
ficient gl4 involved six F correlations. This fact, plus the fact that g14 could 
be reliably estimated to be ~-3 (using scaling) and that g14k14"~0.00| 
explains our not computing it exactly. 

A P P E N D I X  B 

To get the curvature effects we needed the In c5 singularity in c?2f'/Ok 2. 
This quantity is not available in any published work. We will sketch its 
computation. The strategy will be to compute 02f/Ok~ and then take the K 1 
derivative afterwards. Now 

r ] 
]/ul  (<n(x, y )>-  <H(O, 0)>2) i 

L xy x 'y '  J 

= ~ ((H(0, 0) H(x, y)>--  (H(0, 0)> 2) (BI) 
x , y  

where H(x, y) is the nnn coupling at site x, y. (There are two terms per site 
in H; SoS4 and its reflection on the x axis.) 

Consider first (H(0, 0)>. We can write it as 

(H(0, 0)> = <01 ~ (1 )  ~,~(0)10> + <01 ~3(0) ~3-1(1) 10> 

= (01Q(0, 0)10} (S2) 
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In terms of this ~ we can write 

<H(0, 0) H(x, y)> = <01 ~(0 ,  0) ~(x, y) 10> (B3) 

as long as x, y is not on the same row as (0, 0) and mod(x)  is not less than 
or equal to 1. For these contact terms there is a problem because the z 
symbol treates g2 as a block whereas the correct ~ ordering must be done 
with respect to the four a3's (with four time coordinates) that occur in 
~(0, 0) f2(x, y). Assuming that these dangerous terms are treated with care, 
a typical term will be like 

<01 ~[ro / - ; r~yr ;  ~,3 10> 

where F o and F ;  are F ' s  centered near the origin while the other two are 
centered near x, y. If we now use Wick's theorem, the term 
(FoF'o>(Fx, vF'~v> becomes equal to (LoF'o> 2 (by translation invariance). 
This term is exactly cancelled by the (0l s 0)10> 2 term. The other two 
terms will have x, y dependence. Thus we will need terms like 

<ol ror'~ ~, IO><Ol r;r~,.~ IO> 
x y  

Since the FF correlations are given as Fourier transforms anyway, 
what we want is then a convolution of the form 

f d2q/(2~) 2 rr'(q) r'r(-q) 

These are then evaluated, amends are made for the contact terms 
referred to earlier, the In c~ term is pulled out and finally, an overall factor 
of - 8 / ~  is dropped. 
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